Unit 5 Assessment

- Find a common denominator for the pairs of fractions given. Rewrite the fractions as equivalent fractions with a common denominator.
 - **a.** $\frac{5}{6}$ and $\frac{1}{2}$
 - **b.** $\frac{3}{8}$ and $\frac{2}{5}$
- 2 Describe the strategy you used to find a common denominator for $\frac{3}{8}$ and $\frac{2}{5}$ in Problem 1b.

- Use the equivalent fractions you wrote in Problem 1 to help you solve.
 - **a.** $\frac{5}{6} \frac{1}{2} =$ _____
 - **b.** $\frac{3}{8} + \frac{2}{5} =$ _____

Estimate. Then solve. Show your work.

Use your estimate to check whether your answer makes sense.

Estimate: _____

$$q\frac{2}{3} + 4\frac{1}{5} =$$

(5) $3\frac{3}{4} - 1\frac{2}{5} = ?$ Estimate:

$$3\frac{3}{4} - 1\frac{2}{5} =$$

43

Unit 5 Assessment (continued)

G Jenny walked $2\frac{3}{8}$ miles on Monday and $1\frac{7}{8}$ miles on Tuesday. How many miles did she walk on Monday and Tuesday all together?

(number model)

(estimate)

Jenny walked _____ miles.

- **7 a.** What is $\frac{1}{5}$ of 45? _____
 - **b.** What is $\frac{3}{5}$ of 45? _____
 - c. Explain how you can use your answer to Part a to help you solve Part b.

Solve.

- 9 $12 * \frac{5}{6} =$
- Look at the problem 15 * $\frac{3}{5}$.
 - a. Will the product be greater than 15? _____

How do you know? _____

b. Will the product be greater than $\frac{3}{5}$?

How do you know? _____

c. Solve. $15 * \frac{3}{5} =$

Unit 5 Assessment (continued)

Fold a piece of paper to help you solve the problem $\frac{2}{3}$ of $\frac{3}{4}$. Then draw lines and shade the rectangle at the right to show what you did.

 $\frac{2}{3}$ of $\frac{3}{4}$ is ______.

Write a number story that matches the expression $\frac{5}{6}$ * 12. Then solve the number story.

Solution: _____

a. What are the dimensions of the shaded rectangle in the area model at the right?

_____ unit by ____ unit

b. What is the area of the shaded rectangle?

_____ square unit

c. Write a multiplication number sentence that matches the area model.

Unit 5 Assessment (continued)

Use the fraction multiplication algorithm to solve.

$$\frac{3}{5} * \frac{4}{10} =$$

$$\frac{2}{3} * \frac{4}{9} =$$

For each problem below, write a division number model with a letter for the unknown. Then draw a picture to solve the problem.

Write a multiplication number sentence to show how you checked your answer.

Wallace has $\frac{1}{2}$ gallon of milk. He wants to pour it into 4 smaller containers, putting the same amount in each container. How much milk should he put in each container?

Division number model:

Wallace should pour _____ gallon of milk into each container.

Check:

Ms. Reynolds has 5 pounds of clay for her art club.

If she divides the clay into $\frac{1}{3}$ -pound pieces, how many pieces will she have?

Division number model:

Ms. Reynolds will have _____ pieces.

Check: _____

Unit 5 Challenge

Find a common denominator for the following 4 fractions.

Common denominator: _____

Rewrite the fractions as equivalent fractions with a common denominator,

 $\frac{5}{12} = \frac{1}{3} = \frac{5}{6} = \frac{21}{24} = \frac{1}{24}$

Find the sum of all 5 fractions.

 $\frac{5}{12} + \frac{1}{3} + \frac{5}{6} + \frac{21}{24} =$

When Marla measured her ponytail in January, it was $5\frac{3}{8}$ inches long. She measured it again in August and found it had grown $3\frac{3}{4}$ inches. Just after she measured it in August, Marla got a haircut. The stylist cut off $2\frac{1}{2}$ inches of the ponytail. How long was Marla's ponytail after her haircut?

Number model:

Estimate: _____

Marla's ponytail was _____ inches long after her haircut.

Amber and Jorge were talking about how to solve the problem $\frac{5}{6}$ of 40. Amber said, "I can solve this by finding $\frac{1}{6}$ of 40 and multiplying the answer by 5." Jorge said, "I can solve this by finding $\frac{1}{6}$ of 40 and subtracting the answer from 40." Will both strategies result in the correct answer? Explain why or why not.

Copyright © McGraw-Hill Education. Permission is granted to reproduce for classroom use

Unit 5 Challenge (continued)

4 What is $\frac{1}{2}$ of $\frac{2}{3}$ of $\frac{3}{4}$ of 1?

Explain how you found your answer.

Angela used the multiplication rule to find a fraction equivalent to $\frac{5}{6}$. Her work is shown below.

$$\frac{5 * 100}{6 * 100} = \frac{500}{600}$$

a. Explain how Angela knows that $\frac{500}{600}$ is equivalent to $\frac{5}{6}$.

b. Would Angela have gotten an equivalent fraction if she multiplied $\frac{5}{6}$ by $\frac{250}{250}$? Why or why not?